If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x+294=0
a = 1; b = -35; c = +294;
Δ = b2-4ac
Δ = -352-4·1·294
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-7}{2*1}=\frac{28}{2} =14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+7}{2*1}=\frac{42}{2} =21 $
| 7w+w=8 | | 4x+0=3x+4 | | -7(v-1)=-4v+19 | | -4(v-4)=2(-2v+7) | | 8+u/3=23 | | -2y=-17 | | 18-7*n+1=-9 | | C=x+2x-7x+4x-1 | | 17y=54+8y | | 2a+15=5 | | 5m=3m+0 | | 5^3x=2.6 | | 0=6x^2+4x-32 | | -8u-43=-5(u+5) | | 20x+727=360 | | 51/2I+2/3i=37 | | 4g+3=2(2g | | -8u-43=-5(u+5 | | 6+2x2−3x=8x2 | | 5x-2x+12=7+5+3x | | 6+2x^2−3x=8x^2 | | 4(2x+18)=2(x+12) | | 2(600+x)/3-400=10 | | -7x-41=2(x-7 | | 5b-9b=2 | | 5(x-16)=x+16 | | -10=-y | | 8-3.5p=28 | | 6+2x^2−3x=8x^2 | | 2(x+9)=6x-10 | | 28-x=17=3x | | 9-x=8-2x |